

Diana Rietz and Simon Ackerman

Harvesting-Silviculture Interface

- Closely related and affected by one another
- Technological advances have occurred in both sets of operations in SA

Opens up opportunities for improved

efficiencies

- 1. Define challenges- opportunities
- 2. Determine causes
- 3. Consider solutions:

Short- (immediate), medium- and long-term

Challenges: Silviculture perspective due to harvesting:

- Residues and timber waste
 - Quantity fire hazard
 - Distribution physical impediment and compartment access
- Stump height
 - Mechanised ops: physical impediment and maintenance
- Stump coppice-ability
 - Mechanised ops stump damage
- Rutting and compaction
- Compartment accessibility
 - Steep compartments mech harvested

Challenges: Harvesting perspective due to silviculture:

- Orientation and "straightness" of tree lines
 - Mechanised ops: contour vs up-down slope straightness of rows
- Vegetation management/weeding
 - Mainly pre-harvest of sawtimber stands
- Spacing
 - Mechanised ops accessibility to compartment

- Non-uniform and coppiced stands
 - Efficiency of mechanised ops

Why do these challenges/opportunities exist?

Possible reasons:

- Management structures and focus
 - Separate management of harvesting and silviculture
 - Drive to lower costs within each operational area
- Outsourcing/contracting of operations
- Increased mechanisation of operations
 - Labour ergonomics
 - Cost effective
 - Technological advances

tigated

Harvesting:

- Orientation and "straight
- Vegetation management -
- Spacing Investigated
- Non-uniform and coppice stands Limit

How can we create greater synergy between harvesting and silviculture?

By adjusting the current "modus operandi":

- Variety of operations employed within the industry
- Economics of any change in operations must be economically viable
- The implications of *any* change must be understood as fully as possible prior to embarking on that change

Harvesting opportunities:

Residues and utilisable timber waste.

Can we:

- Mulch/coarse mulch?
- Bio-energy production? (portable fast pyrolysis)
- Community collection of timber and large branches?
- Longer log lengths or optimised lengths?
- Better monitor and promote timber extraction?
- Own operations?
- Alteration of operations?

Harvesting opportunities:

Stumps

Adapt operation/machinery to cut stumps lower?

© ICFR 2013

Perform pre-harvest under canopy burn?

Stump coppice-ability

- Machinery selection?
- Row width?

Rutting and compaction

- Timing of operations?
- Matching machinery to sites?

Silviculture opportunities:

Orientation and straightness of tree lines

- Improved planning/company policy?
- Implications on
 - Stand productivity and mechanised operations
 - Erosion and vegetation management

Silviculture opportunities:

Pre-harvest vegetation management (sawtimber)

- Leave residues from thinnings in sunlit areas?
- Keep forest floor intact (reduce undercanopy burning)?

Spacing (row widths)

- Optimised for operations?
- Implications for stand productivity and vegetation management?

Non-uniform and coppice stands

• Ensure better silviculture?

Silviculture (mechanised):

Seedling specifications

- Seedling size optimal?
 - Number of seedlings per tray
 - Biodegradable inserts
 - Nursery requirements
 - Tray transport
- Seedlings vs cuttings?
- Diseases from damage in planting

Pit size and quality specifications

Adjustment to hydrogel application

Residues and timber waste mgt

Machinery adaptation?

What are the common denominators in these potential solutions?

1. Research

- Future research priorities integration of mechanised operations
- Utilise current knowledge (mainly around manual operations)

2. Planning and communication

Planning: Determine the links between components of the *entire* supply chain

Five main components:

1. Research and development - Site-species matching, mill requirements etc.

Full supply chain planning required

4. Harvesting - System selection, site conditions etc.

5. Transport – Distance to mill, transport type etc.

Many components affect one another

Planning example:

CFR

Revisit how we plan and test implications

Conclusions

- Mechanised operations will become more prevalent
- Need to adapt/invent new systems originally designed for manual operations to that of mechanised systems
- Communicate
- Recognise that opportunities exist to reduce the delivered cost of wood – costs/tonne – implications for global competitiveness
- Ensure future wood supply by realising implications of changes on site productivity

ICFR/FESA collaboration:

- Industry survey complete Publication in process
- Further interaction with key members in all companies and other researchers to determine research priorities
- Initiate research
- Decision support tool

Acknowledgements:

Many company people

• Fellow researchers at the ICFR

